برآورد تبیخ و تعریق پانسیل منطقه بلوجستان جنوبی

دکتر رحمت‌الله فردودی - استادیار گروه جغرافیا، دانشگاه تهران

چکیده

تبیخ و تعریق پانسیل یکی از عناصر مهم گردشگری است که در طرح‌های متنی آب و آبیاری، سازه‌های آبی، کشاورزی و ... مکانیک قرار می‌گیرد. بررسی میزان نوسان دماهای هوا و روزیم

سالانه آن در مناطق خشک از امیت و یا یارای برخوردار است؛ زیرا به سبب کمی پارش‌های نو این

نواحی دما و نوسان آن در ماه‌ها و فصول مختلف سال بطور مستقیم یک عامل تبیخ و تعریق و در توجه

نیاز آبی اثر می‌گذارد. در این تحقیق از داده‌های هواشناسی استخراج‌های منطقه مورد مطالعه (قصر قند،

پيرسپار، كنجر سرپنژ، دانشگاه‌ها و غیره) استفاده شده و سپس جهت تعیین مناسب‌ترین

روش تبیخ و تعریق پانسیل در سطح منطقه، اقدام به تحلیل نمودارهای مقایسه‌ای بین روش‌های

فوق‌المقدرة به است. براساس محاسبات عمل آمده، نتایج کلی ذیل است. این است:

در منطقه بلوجستان جنوبی و در طول سال، تبیخ و تعریق با توجه به دهجات اماکن

فعالیت‌های زراعی و وجود دارد. بدین ترتیب تبیخ و تعریق پانسیل برای کل سال از دو روش تورنت

وایت و بلانی کریدل محاسبه می‌گردد. روی تورنت وایت تحقیق صحتی برای نقل مختلف ارائه

نتیجه داده‌ها) و روی روش بلانی کریدل محاسبه از روش اندازه‌گیری منطقه (طی‌شدن) دارد.

همچنین در این مطالعه مشخص می‌گردد که از غرب و شمال به طرف شرق و جنوب، از میزان تبیخ و

تعریق کم‌تری می‌شود و به طور کلی منطقه بلوجستان جنوبی در تمام ماه‌ها دارای تبیخ و تعریق پانسیل

پائین‌تر از پارش است.

واژگان کلیدی: تبیخ و تعریق پانسیل، تورنت وایت، بلانی کریدل، بلوجستان جنوبی

مقدمه

فرآیند تبیخ آب به بخار و تبیخ‌گویی. این عمل همراه با انتقال انرژی است؛ بطوریکه مولکول‌های آب با اخذ

۱۰۰ گرم‌گذاری گرم، حالت فارار از سطح آب را پیدا کرده و در تابع در هوا منتشر می‌شوند. این فرآیند به عوامل و شرایط

مختلفی از جمله تابش خورشید (از نظر شدت و مدت)، خشکی هوا، جریان حرارت، سرعت باد و میزان رطوبت مطلق

با بارش‌های طراحی شده است (آرنون، ۱۳۶۳).
وا نیاز دارد. تفکیک مقدار تبخیر و تعرق سطوح خاک و گیاه از یکدیگر بسیار مشکل است و به همین جهت مقدار تبخیر از سطوح خاک و تعرق از شاخ و برگ‌گیاه را تبخیر و تعرق (1) می‌نامند که به صورت نوآم محسوب می‌شوند و مورد مطالعه قرار می‌گیرند. اهمیت تبخیر و تعرق از آنجا مشخص می‌شود که بدین ترتیب در سطح دنیا 75% آبی که بر روی خشکی‌ها می‌ریزد، مستقیماً به صورت تبخیر و تعرق از دسترس خارج می‌گردد.

تایب خورشید، انرژی مورد نیاز برای این عمل را تأمین نموده و از اینرو در طول روز و در فصل گرم، انرژی بیشتری برای عمل تبخیر و تعرق وجود دارد. عرضه‌های جغرافیایی نیز در میزان تبخیر و تعرق مؤثرند؛ بطوریکه در عرضه‌های جغرافیایی پایین با توجه به زاویه و مدت نشان، تبخیر و تعرق بیشتری نسبت به عرضه‌های بالا صورت می‌گیرد. براساس فرمول دالتن (2)، دما مهم‌ترین نشان را در تبخیر، باد و تیم نسبی نگذشته می‌گذارد و تعرق را بر عهده دارد. در مورد باد و جریان‌های هوا، جریان‌های عضوی هواکه صعود و نزول هوای تحت در میان فشار و پرتاب در حال ناپایداری و پایداری هوا می‌باشد و تغییر کندنی خشکی و رطوبت هوا در تغییر میزان تبخیر و تعرق هستند، نسبت به جریان‌های الهی که اغلب نسبت به عادت‌های غربی در می‌گیرد، اثرات بیشتری در بدیهه تبخیر و تعرق دارد (مصوری، غیره - 1376).

از دیگر موارد مؤثر بر تبخیر و تعرق، ذرات است، رطوبتی هوای خشکی به همراه دمای بالاست، بطوریکه همراه با وزش بادهای نهاد، میزان تبخیر و تعرق افزایش می‌یابد. تغییر میزان تبخیر و تعرق در مناطق مختلف بیشتر مناطق خشکی و نسبت خشکی که از نوکات بالایی برخوردارند، از چند جهت حائز اهمیت است:

1- رطوبت از طریق تبخیر، دمای منطقه را کاهش می‌دهد و لذا این‌دسته گروه آبی آنتالیک می‌تواند در تعیین نوع اقلیم منطقه مؤثر باشد.

2- تبخیر از سطوح آب‌های آزاد، باعث تنفیذ آب می‌شود که لازم است مقدار آن محاسبه شود.

3- میزان تبخیر و تعرق از منابع آبی که در مصارف زراعی و بازداری صورت می‌گیرد، از اهمیت ویژه‌ای برخوردار است. این مسئله در تعیین ابعاد شبکه‌های آبیاری از جهت مقدار و زمان آب مصرفی، مورد توجه است.

داده‌ها و روش‌کار

از آن‌جاست که منطقه بافت لب‌چشمه جنوبی بعنوان یکی از مناطق کشاورزی کشور محصول می‌شود؛ لذا مطالعه تبخیر و تعرق و اثرات آن در برآوردها نیاز واقعی آب و آب‌های نوآم و توزیع اقتصادی منطقه از جنبه‌های مختلفی که به منابع آب و بارش‌های می‌تواند نفدهد، ضروری است. در این منطقه به بیش و بیش‌تر می‌توان به آب‌های طبیعی آبیای و انتقال کم، با فرض وجود آب، امکان رویش و کشش در نظام فصول سال فراهم می‌باشد. به‌دلیل ترتیب جهت مطالعه تبخیر و تعرق پتانسیل و مستقیم در استیگم‌های منطقه (میزان، کهکشان، پی‌هار، راه‌خورشید).

1- Evapotranspiration

\[E_t = 0.4 (1 - RH) \exp[\frac{17143}{(t + 273)}] \]

که در آن: \(E_t \) تبخیر بر حسب میلیمتر در روز، \(RH \) میزان نسبی بیشتر به متر در نامی، \(t \) میزان نسبی و 273 به درجه سلسیوس است.
جدول 1. مشخصات استقگاه‌های باران سنگی و تبخیر سنگی موردها مطالعه در بلگچستان جنوبی

توضیحات	ارتفاع (متر)	عرض جغرافیایی (گربه)	طول جغرافیایی (گر)	استیگاهگر
تبخیر سنگی	10	25 - 32	60 - 37	طبس
باران سنگی	50	25 - 35	60 - 08	کوهستان
تبخیر سنگی	60	25 - 54	60 - 52	پسرهاب
تبخیر سنگی	80	25 - 38	60 - 15	کردسیراز
تبخیر سنگی	45	25 - 32	60 - 37	قصرقند
تبخیر سنگی	70	25 - 32	60 - 37	پیشین
تبخیر سنگی	60	25 - 32	60 - 37	باهوکلات

در این مطالعه جهت تعیین شاخص‌های شکست و تبخیر و تعرق، از محاسبات آماری استفاده شده است. داده‌های استقگاه‌های باران سنگی منطقه از مرکز تحقیقات ماب آب (طرح احترام) گرفته و از آنها 7 استقگاه بارانسنگی در محدوده عرض جغرافیایی 25° تا 27° و طول جغرافیایی 59° تا 61° در بلگچستان جنوبی (که از نظر آماری کاملاً تری داده‌های صحیح تری برخوردار بودند) انتخاب گردید. به‌طور کلی از ابزارهای SPSS به تجزیه و تحلیل داده‌ها برداشته شد. در ادامه جهت تعیین فصول خشک و نیمه خشک و فصولی که منتهی به روش و کشت و کار می‌باشند، از شاخص‌های محاسباتی تبخیر و تعرق پتانسیل بلاتی کریدل؛ تورنت وایت استفاده گردید. در شاخص بلاتی کریدل بیشتر بر نقش دما و نسبت باد و نسبت باد و نسبت خورشید تأکید شده و در روش تورنت وایت با استفاده از میانگین دما محاسبه انجام گرفته است (علیزاده ۱۳۷۴).

تجزیه و تحلیل و تفسیر نتایج

در این تحقیق تبخیر و تعرق پتانسیل ماهانه و سالانه از طریق روش‌های برآورد تبخیر و تعرق تورنت وایت، بلاتی کریدل و روشن‌اندازه گرفتن (شناختی) برای کلیه استقگاه‌های منطبق محاسبه گردیده است (جدول شماره ۲). مطابق جدول، بیشترین میزان تبخیر و تعرق سالانه به مرکز منطقه در استقگاه قدیر مربوط می‌گردد که با توجه به دوری نسبی از دریا و ارتفاع بیشتر (اگر توجه به خشکی هوا و فاصله شدید حرارتی شیب ارتفاع و نسبت شدید آبیابی) نسبت به استقگاه‌های مجاور بیشتری تبخیر و تعرق بیشتر در فصول بهار و تابستان به اوج خود می‌رسد (نمونه‌ی شماره ۱).

کمترین میزان تبخیر و تعرق در منطقه مربوط به دو استقگاه کوه پیک و طبس به‌اشک. در این دو استقگاه به دلیل نزدیکی به ساحل دریا و در آن تحیه بالا بدون میزان رطوبت نسبی (حالات شریکی)، میزان تبخیر و تعرق پتانسیل بالاتر می‌باشد (جعفری‌پور، ۱۳۶۳). مطابق محاسبات انجام گرفته، مشخص گردید که استقگاه قدیر سرپز از نظر میزان تبخیر و تعرق حالت آتشفشانی نسبت به شرایط کلی منطقه دارد و با توجه به انرکه از نظر عرض جغرافیایی از استقگاه قدیر بیشتر است. این نتیجه با الکتر است، لیکن به هر مراحل در استقگاه کوه پیک و طبس از پایین ترین میزان تبخیر و تعرق بالقوه بیشتری می‌باشد. از جمله
علل این امر می‌توان به موقعیت ایستگاه «کجدر سرباز» در مسیر اصلی جریانات مونسون‌های هند در ماه‌های تیر و محرم اشاره نمود که کاهش تابش مستقیم اشعه خورشید (ابن‌الویه) و همچنین کاهش درجه حرارت را به همراه دارد و در مجموع باعث کاهش میزان بی‌خیزی و تعرق در این ایستگاه می‌شود.

نمودار ۱ - مقایسه بی‌خیزی و تعرق پتانسیل ماهانه در بلوچستان جنوبی ۱۳۶۵-۷۴

نمودار ۲ - مقایسه بی‌خیزی و تعرق سالانه در منطقه بلوچستان جنوبی ۱۳۶۵-۷۴
جدول شماره 2: محاسبه تبخير و تعرق پتانسیل به روشهای بلانی کریدل، نوریت وایت و طشت در استگاه‌های منتخب بلوچستان جنوبی

<table>
<thead>
<tr>
<th>شهریور</th>
<th>مرداد</th>
<th>تیر</th>
<th>خرداد</th>
<th>فروردین</th>
<th>اردیبهشت</th>
<th>سپتامبر</th>
<th>مهر</th>
<th>آبان</th>
<th>مهر</th>
<th>روش استفاده</th>
<th>روشنایی</th>
<th>کهیر</th>
<th>پری سهراب</th>
<th>کنجرد</th>
<th>قصر قدس</th>
<th>پیشین</th>
<th>باهوکلاته</th>
</tr>
</thead>
<tbody>
<tr>
<td>181/9</td>
<td>205/9</td>
<td>281/5</td>
<td>236/24</td>
<td>232/24</td>
<td>215/24</td>
<td>183/24</td>
<td>119/85</td>
<td>103/9</td>
<td>88/9</td>
<td>91/32</td>
<td>135</td>
<td>161/6</td>
<td>159/4</td>
<td>186/14</td>
<td>163/6</td>
<td>193/5</td>
<td>277/3</td>
</tr>
<tr>
<td>247/4</td>
<td>213/1</td>
<td>252/4</td>
<td>287/5</td>
<td>237/5</td>
<td>242/5</td>
<td>203/5</td>
<td>148/2</td>
<td>108/4</td>
<td>82/4</td>
<td>98/3</td>
<td>115/6</td>
<td>247/2</td>
<td>215/6</td>
<td>165/2</td>
<td>215/2</td>
<td>180/2</td>
<td>305/4</td>
</tr>
<tr>
<td>226/8</td>
<td>228/5</td>
<td>278/3</td>
<td>247/3</td>
<td>232/3</td>
<td>218/3</td>
<td>170/3</td>
<td>107/6</td>
<td>87/6</td>
<td>77/6</td>
<td>97/6</td>
<td>113/6</td>
<td>229/6</td>
<td>208/6</td>
<td>174/6</td>
<td>226/6</td>
<td>184/6</td>
<td>359/6</td>
</tr>
<tr>
<td>215/6</td>
<td>217/4</td>
<td>263/1</td>
<td>235/1</td>
<td>220/1</td>
<td>185/1</td>
<td>140/1</td>
<td>75/1</td>
<td>57/1</td>
<td>47/1</td>
<td>67/1</td>
<td>93/1</td>
<td>206/1</td>
<td>171/1</td>
<td>138/1</td>
<td>216/1</td>
<td>184/1</td>
<td>306/1</td>
</tr>
<tr>
<td>227/8</td>
<td>237/5</td>
<td>275/2</td>
<td>248/2</td>
<td>232/2</td>
<td>207/2</td>
<td>172/2</td>
<td>107/2</td>
<td>87/2</td>
<td>77/2</td>
<td>97/2</td>
<td>113/2</td>
<td>229/2</td>
<td>208/2</td>
<td>174/2</td>
<td>226/2</td>
<td>184/2</td>
<td>359/2</td>
</tr>
<tr>
<td>226/8</td>
<td>228/5</td>
<td>278/3</td>
<td>247/3</td>
<td>232/3</td>
<td>218/3</td>
<td>170/3</td>
<td>107/6</td>
<td>87/6</td>
<td>77/6</td>
<td>97/6</td>
<td>113/6</td>
<td>229/6</td>
<td>208/6</td>
<td>174/6</td>
<td>226/6</td>
<td>184/6</td>
<td>359/6</td>
</tr>
<tr>
<td>218</td>
<td>217</td>
<td>275</td>
<td>232</td>
<td>207</td>
<td>172</td>
<td>107</td>
<td>87</td>
<td>77</td>
<td>97</td>
<td>113</td>
<td>229</td>
<td>208</td>
<td>174</td>
<td>226</td>
<td>184</td>
<td>359</td>
<td></td>
</tr>
</tbody>
</table>
بیان تبیخ و تعرق پاتانسلی مرطوبه ماهانه جنوبی

بیان میزان تبیخ و تعرق در سطح منطقه مرطوبی به ماه خرداد است. این میزان تبیخ چنین نسبت به ماه‌های تیر و مرداد بیشتر است. چراکه در ماه‌های فوق، بیشتر استرکت کم فشار حارثی و ورود جریان‌های موسی و همچنین ایجاد شرایط ابری و شریجی بودن هوای میزان تبیخ و تعرق به نسبت خرداد کاهش می‌یابد. پس از انجام مطالعات مشخص گردد که براساس این دو روش محاسبه تبیخ و تعرق، کمترین مقدار تبیخ و تعرق ماهانه دوره سرد و سالانه در روش تقویت آبیاری منطقه مرطوبی به روش تکرار وایت است که حاصل بکارگیری پارامتر تقویت آبیاری در حالت ماهانه نه تنها به باشند و با نام‌گذاری مه‌گرفته‌های دیگر اقلیمی مؤثر در میزان تبیخ و تعرق نظر (وزش باد، رطوبت نسبی، تابش آفتابی...) که در روش محاسبه بلایی کردن مورد استفاده است باعث نوسانات شرایط روزی و ماهانه شدید درجه حارثی در منطقه شده و در ماه‌ها و فصول مختلف بر تغییرات تبیخ و تعرق پاتانسلی اثرات مفیدی ایجاد می‌کند (نمونه‌های شماره ۳ و ۴).

محاسبه تبیخ و تعرق از روش بلایی کردن سیستم بارندگی به اندامه‌گری مستقیم (ستینک) می‌باشد که می‌توان آن را به‌طور خاص برای اندازه‌گیری و بررسی تبیخ و تعرق پاتانسلی و نیز آبی‌گیاه در منطقه در نظر گرفت (نمونه‌های شماره ۴).

پژوهش کلی با توجه به محاسبات صورت گرفته، به نسبت دوره از دریا و حردی به طرف شرق، بر میزان تبیخ و تعرق پاتانسلی افزوده می‌شود که این ناشی از خشک‌های هوا و گرمایش شدید سطح زمین در نیمروز و دوره از متاح رطوبتی درج را به‌طور می‌باشد که ناشی از دریا و رشته‌کننده‌ای هوا و افزایش گرمایش رطوبتی هوا، تشکیل می‌شود.

نتایج گیری و ارائه پیشنهادات

بررسی شرایط اقلیمی و بارندگی خشک‌های و خشک‌سالاری و تغییرات ماهانه آب با توجه به تبیخ و تعرق پاتانسلی در نواحی جنوب‌شرقی که هنوز هم از سیستم آبیاری سنتی برخوردارند، از آنگاه نظرات مختلف درباره اهمیت این فراوانی است. با توجه به اینکه از نظر اقلیم شناسی، شرایط بارندگی مناطق مختلف در سطح مرطوب بسیار متفاوت است، خطا است که میزان بارندگی سالانه، برآورده تبیخ و تعرق باشد و نیز میزان تبیخ و تعرق یک طرف به طرف رسیده باشد. به‌طور می‌باشد تا حدود زیادی تابعی از درجه حارثی در هر ناحیه است. از این بحث و ملاحظات این عناصر در تعيین شرایط خشکی، شدت، مدت و همچنین سطح آب از اهمیت بالایی برخوردار می‌باشد.

در این پنهان، در دوره‌های مال سیستم‌های چربی و رطوبت زا تغییرات قابل شده و خشکی مطلق حکم‌مرده می‌گردد و با قطع بارشها و درمان تبیخ و تعرق پاتانسلی، نیاز آبی شدت پیدا می‌کند. در ضمن در این دوره، با استفاده کم فشار آسیبی در جنوب‌شرقی ایران و پاتانسل بیشتر و گرمایش عمومی آن قابل بهره‌برداری دینامیکی جب حارثی از سطح زمین سبب ورود مونتاژهای مرطوب جنوب آسیا به منطقه می‌شود، بطوریکه ایجادگی در شرایط تابعی ۱۴۰ روزه سیستان در منطقه و مؤثر بوده و تبیخ و تعرق را تشکیل می‌کند.

پژوهش کلی با توجه به تبیخ و تعرق پاتانسلی و مقدار درجه و رطوبت منطقه و نیاز آبی کشوری، می‌توان نوع اقلیم منطقه را

با توجه به میزان تبیخ و تعرق پاتانسلی و مقدار درجه و رطوبت منطقه و نیاز آبی کشوری، می‌توان نوع اقلیم منطقه را
نمودار ۳: مقایسه تبخیر و تعرق پتانسیل ماهیانه در دوره سرد در منطقه برخی استان جنوبی ۱۳۶۵ - ۷۶

نمودار ۴: مقایسه تبخیر تعرق پتانسیل ماهیانه در دوره گرم در منطقه برخی استان جنوبی ۱۳۶۵ - ۷۶
خشکی و بی‌بابایی گرم تعیین نمو که به سمت خشک‌کنی‌های داخلی بر خشکی‌ها و در نتیجه تبخر و تعرق افزوده می‌شود، به سمت غرب و جنوب از میزان تبخر و تعرق کاسته می‌شود. این امر ناشی از رتوبت نسبی بالا و نقص تعیین کننده در ریا است که با وجود آب و هوای خشک و گرم، بحری ترین استگاهه و منطقه کشور (جاسک) محروم می‌شود.

در نهایت با توجه به مقادیر پاش و تبخر و مقایسه آنها به این نتیجه مهم می‌رسد که در کل ماههای سال تبخر و تعرق پتانسیل بالاتر از بارندگی است و این نسبت در فصل سرد کاهش یافته و در فصل خشک و گرم تشدید می‌شود که خود نشانه‌کمبود آب و نیاز آبی بالای گیاهان در منطقه می‌باشد.

در منطقه مورد مطالعه، با توجه به محاسبه تبخر و تعرق پتانسیل به وسیله سه‌گانه، نیاز آبی نباتات زراعی و باوعال در آن در دوره رشد برای آب‌های نیاز آبی این مراکز از روش بالایی کویدل و مستقیم به ترتیب 3/0/1306 و 1/0/18 میلی‌متر و برای گیاه فرنشی به ترتیب 9/84/0/6/6 و 9/8 میلی‌متر است. بنابراین با توجه به بارش بسیار اندازه در دوره گرم و کمبود منابع آب سطحی و زیرزمینی، کشاورزی و باوعال در این منطقه با کمبود شدید آب روبرو می‌باشد.

تشکر و قدردانی

بدری‌سیل از معاونت محترم پژوهشگاه دانشگاه تهران که امکانات تحقیق را فراهم نموده‌اند، تشکر و قدردانی می‌گردد.
منابع و مکاتبه:
۲ - آمار استقامت‌های پارس سنگی، آب و هوای ایران، شماره ۲۲، سال ۱۳۶۱.
۶ - جغرافیای ایران، شماره ۲۲، مؤسسه جغرافیایی ایران.
۱ - سازمان هواشناسی - سازمان هواشناسی.
۴ - علی‌جانی، بهلول، ادبیات سیاسی ایران، شماره ۲۲.
۳ - علی‌رضا امینی، هیرولوژی کاربردی، آستان قدس رضوی، چاپ ششم، مشهد.
۵ - غیور، حسنعلی، ادبیات سیاسی ایران، اثرات گرم‌تر شدن زمین بر چرخه آب در طبیعت، تحقیقات جغرافیایی مشهد، شماره ۲۲.